首页 > 星座 > 星座知识 > 星座问答 > 金牛座T型变星,银河在哪里啊

金牛座T型变星,银河在哪里啊

来源:整理 时间:2024-05-24 23:39:16 编辑:运气王 手机版

本文目录一览

1,银河在哪里啊

天上。。牛郎织女的故事听过没
就在你站的那颗球的外面
银桥
宇宙

银河在哪里啊

2,什么是沙兹曼机制

  1962年,沙兹曼提出另一种通过磁场作用转移角动量的机制,称为沙兹曼机制。他认为,太阳(恒星)演化早期经历一个金牛座T型变星的时期,由于内部对流很强和自转较快,出现局部强磁场和比现今太阳耀斑强得多的磁活动,大规模地抛出带电粒子。这些粒子也随太阳磁场一起转动,直到抵达科里奥利力开始超过磁张力的临界距离处,它们一直从太阳获得角动量。由于临界距离达到恒星距离的量级,虽然抛出的物质只占太阳质量的很小一部分,但足以有效地把太阳的角动量转移走。沙兹曼也用此机制解释晚于F5型的恒星比早型星自转慢的观测事实。晚于F5型的恒星,都有很厚的对流区和很强的磁活动,通过抛出带电粒子转移掉角动量,自转因而变慢。然而早于F5型的恒星,没有很厚的对流区,没有损失角动量,因而自转较快。

什么是沙兹曼机制

3,什么是恒星

永恒的星星。
本身会发热发光的星球就叫恒星.
古代对恒星的定义是在天空中位置相对固定不变的一类星体的总称,现代科学认为恒星是自身可以通过核聚变等反应能够发光发热的一类星体,最典型的就是太阳
一般认为是像太阳这样的星体.
恒星是指宇宙中靠核聚变产生的能量而自身能发热发光的星体。过去天文学家以为恒星的位置是永恒不变的,以此为名。但事实上,恒星也会按照一定的轨迹,围绕着其所属的星系的中心而旋转。恒星是宇宙中最基本的成员。 行星是自身不发光的,环绕着恒星的天体。一般来说行星需要具有一定的质量,行星的质量要足够的大,以至于它的形状大约是圆球状,质量不够的被成为小行星。行星的名字来自于它们的位置在天空中不固定,就好像它们在行走一般。卫星是环绕一颗天体按一定的轨道做周期性运行的物体。其包括人造卫星和与此相对的天然卫星。

什么是恒星

4,恒星是怎么出现的

1947年苏联天文学家阿姆巴楚米扬发现O﹑B型恒星(见恒星光谱分类)在天球上的分布有集结现象﹐他认为这不是偶然的投影结果﹐而是一种互相之间有物理联系的恒星群。他把这种比星团稀疏得多的恒星群称为星协。星协分两种﹐一种叫 O星协﹐是O﹑B型恒星的集合﹐几乎所有的O﹑B型恒星都在O星协之中﹐只有个别的位于其他空间。另一种叫T星协﹐是金牛座T型变星的集合。因为O﹑B型恒星和金牛座 T型变星都是十分年轻的天体﹐所以星协也是一种年轻的天体﹐它的年龄只有百万年数量级。在某些空间区域既有O星协又有T星协﹐猎户座星协就是这样的例子。星协和年轻星团﹑四边形聚星有密切的关系﹐O星团和四边形聚星往往构成星协的核心。此外﹐O星协和T星协常常与气体尘埃星云有物理上的联系。在银河系内﹐星协总是位于银河系的旋臂上。在星协中﹐虽然某一特定类型的恒星的密度很高﹐但总的恒星密度却低于周围星场。星协是不稳定的系统﹐已经发现几个O星协在向外膨胀。目前已发现50个O星协﹐25个 T星协。估计银河系内有10个O星协﹐10个T星协。某些恒星在天球上的分布有集结现象,这是一种互相之间有物理联系的恒星群。它们比星团稀疏得多,这样的恒星群称为星协。星协和年轻星团、四边形聚星有密切的关系,也常常与气体尘埃星云有物理上的联系。在银河系内,星协总是位于银河系的旋臂上。在星协中,虽然某一特定类型的恒星的密度很高,但总的恒星密度却低于周围星场。星协是不稳定的系统,已经发现几个星协在向外膨胀。
是星云构成的,这个过程很复杂。要我们回答也只能从百度里找答案

5,恒星产生之谜

根据弥漫说的理论,恒星形成可分为两个阶段,开始时先由极其稀薄的物质凝聚成星云并进一步收缩成原恒星,然后原恒星才发展成为恒星。巨大的星云星际空间普遍存在极稀薄的物质,由于分布不均匀而往往分裂成团块,并向中心凝聚,成为弥漫星云。 弥漫星云在逐步凝聚收缩过程中进一步分裂,变成体积和质量更小而密度却更高的小球状星云。 星云很庞大,半径起码有好几光年。它的外原物质自由地向中心坠落,收缩进行得相当快,但也需几百万年的时间才能落到中心区。随着快收缩过程的进行,星云内部的密度迅速增大,温度快速升高,气压也相应增强,随之发生一系列的反应,使外原物质下落的速度和小球状体的收缩速度减缓,即进入慢收缩阶段。 星云的形状各异,人们用肉眼只能看到一个猎户座大星云。原恒星阶段一般把处于慢收缩阶段的天体称为原恒星。慢收缩开始后,中心区受强烈压缩而升温并发出热辐射,直到最后中心温度升到约800至1000万度以上,由氢原子核聚变为氦原子核的热核反应提供足够的能量,使内部压力与引力处于相对平衡状态,一颗恒星就正式诞生了。 原恒星进一步形成恒星的收缩过程要持续几百万到几千万年。在17世纪时,牛顿提出:散布于空间中的弥漫物质可以在引力作用下凝聚为太阳和恒星的设想经过历代天文学家的努力,已逐步发展成为一个相当成熟的理论。观测表明,星际空间存在着许多由气体和尘埃组成的巨大分子云。这种气体云中密度较高的部分在自身引力作用下会变得更密一些。当向内的引力强到足以克服向外的压力时,它将迅速收缩落向中心。如果气体云起初有足够的旋转,在中心天体周围就会形成一个如太阳系大小的气尘盘,盘中物质不断落到称为原恒星的中央天体上。在收缩过程中释放出的引力能使原恒星变热,当中心温度上升到1000万度以引发热核反应时,一颗恒星就诞生了。恒星的质量范围在0.1-100个太阳质量之间。更小的质量不足以触发核反应,更大的质量则会由于产生的辐射压力太大而瓦解。近年来,红外天文卫星探测到成千上万个处于形成过程中的恒星,毫米波射电望远镜在一些原恒星周围发现由盘两极射出的喷流。这些观测结果对上述理论都是有力的支持。恒星的颜色与其表面温度的关系:其他所有恒星也和太阳一样,是炽热的大火球。不过,它们的表面温度并不相同,天文学家发现,恒星的表面温度越高,它发出的光线的颜色越偏向紫色,温度越低,越偏向红色。因此,通过恒星的颜色,可以较为粗略地判断该恒星表面温度的相对高低。
宇宙中大部分物质都是氢,大家都知道万有引力物质之间都要相互吸引。开始是一些氢形成了一个球,它再继续吸引其他的,直到形成一个很大的球。这时它还不会发光知道非常非常大时中心的温度于压力达到一定程度时氢开始聚变,放出大量的能量,周围的温度和压强都升高其他的氢也开始聚变,这时它就像是被点燃了一样开始发光了。所以恒星都是非常大的,太阳系中的木星的组成元素就跟恒星相似只是不够大,如果它也像太阳那么大它也会发光成为一颗恒星 恒星产生之谜 科学家们认为,发生在137亿年前的大爆炸创造了宇宙,大约1亿年后,氢原子开始结合燃烧,产生了明亮燃烧的恒星,但这些恒星究竟是个什么样子,科学家一直没有搞清楚。据美国宇航局太空网报道,美国的天文学家声称,他们可能已经发现了宇宙的“第一缕曙光”。这一发现有望帮助他们揭示宇宙中各个星系在“大爆炸”发生仅数亿年后开始形成时,整个宇宙的实际发展情景。 该研究将首次向人们展示出距今130亿年前宇宙刚诞生时的雏形模样。 据美国宇航局驻马里兰的戈达德太空飞行中心的研究人员说,他们相信已经捕捉到早已消失了的恒星的辐射痕迹,这些恒星是在宇宙的婴儿时期诞生的。如果上述发现能够被最终证实,该研究将首次向人们展示出距今130亿年前宇宙刚诞生时的雏形模样,同时将有望揭示宇宙中各个星系在“大爆炸”发生仅数亿年后开始形成时,整个宇宙的实际发展情景。 这项研究虽然不是结论性的,但它是证明这些 ... 原恒星 原恒星就是处于“原始状态”(处于慢收缩阶段的天体)的恒星。原恒星由“大爆炸”后产生的星际云(星际云很大,直径在可达上千光年)演变而来。 大爆炸后的宇宙空间充满了大致均匀的星际物质。这些物质中的一些不稳定的因素(主要是引力)慢慢地引起星际云中物质密度的变化,导致一个或几个“引力中心”的出现。这些“引力中心”的引力作用使周围的物质向其中心坠落。物质以越来越快的速度被吸收,这些物质的引力势能转化为热能,致使原恒星中心的温度持续的升高。当温度达到六七百万度的时候,“质子——质子”的聚变核反应被点燃。当温度升到一千多万度时,恒星中心的核反应稳定地进行。至此,恒星的原恒星阶段结束,主序星阶段开始。 在恒星演化过程中处于极早期阶段的天体。通常把正处在引力收缩阶段的浓密星际物质云叫作原恒星,特别是其中的一种近乎球形的球状体。但也有人认为球状体的密度还很小,不足以产生引力收缩;而且球状体中的尘埃与气体的比例过大,不能成为原恒星的原料。不少人认为赫比格-阿罗天体、金牛座t型变星、耀星以及一些红外星是原恒星的不同演化阶段或不同形态。 恒星演化早期处在引力收缩阶段的浓密星际物质云。也有人更严格地把原恒星定义为这样一种天体:它的主要能源既不像主序星来自氢燃烧,也不像主序前恒星靠准流体静力学收缩,释放引力能,而是来自下落物质的吸积。恒星孕育和诞生于气体-尘埃云中,光学望远镜难以探测,寻找原恒星成为红外天文学的重要任务。红外天文卫星发现的红外源中,有些可能是仍然在吸积星云物质的真正原恒星。

6,太阳的奥秘

太阳系是四十六亿年前伴随着太阳的形成而形成的。太阳星云由于自身引力的作用而逐渐凝聚,渐渐形成了一个由多个天体按一定规律排列组成的天体系统。太阳系的成员包括一颗恒星、九大行星、至少六十三颗卫星、约一百万颗小行星、无数的彗星和星际物质等。太阳是银河系中一颗普通的恒星。根据恒星演化理论,太阳与其他大多数恒星一样,是从一团星际气体云中诞成的。这团气体云存在于约四十六亿年前,位于银河系的盘状结构中,离中心约25亿亿公里。其体积约为现在太阳的500万倍,主要成份是氢分子。这就是“太阳星云”。经历四十多万年的收缩凝聚,星云中心诞生了一颗恒星,它就是太阳。在太阳形成以后不久,残存在太阳周围的一些气体和尘埃,形成了围绕太阳旋转的行星和诸多小行星和彗星等其他太阳系天体,包括的地球和月亮。 太阳系九大行星与太阳的位置排列图。从左到右分别是太阳、水星、金星、地球、火星、木星、土星、天王星、海王星和冥王星。 太阳在浩瀚的宇宙中谈不上有什么特殊性。组成银河系的有大约两千亿颗恒星,而太阳只是其中中等大小的一颗。太阳已的年龄有五十亿岁,正处在它一生中的中年时期。作为太阳系的中心,地球上所有生物的生长都直接或间接地需要它所提供的光和热。太阳内核的温度高达摄氏一千五百万度,在那儿发生着氢-氦核聚变反应。核聚变反应每秒钟要消耗掉约五百万吨的物质,并转换成能量以光子的形式释放出来。这些光子从太阳中心到达太阳表面要花一百多万年。光子从太阳中心出发后先要经过辐射带,沿途在与原子微粒的碰撞丢失能量。随后要经过对流带,光子的能量被炽热的气体吸收,气体在对流中向表面传递能量。到达对流带边缘后,光子已经冷却到五千五百摄氏度了。我们所能直接看到的是位于太阳表面的光球层。光球层比较活跃,温度约为摄氏六千多度,属于比较“凉爽”部分。光球层上有一个个起伏的对流单元“米粒”。每个米粒的直径在一千六百公里左右,它们是一个个从太阳内部升上来的热气流的顶问。就是在不断的对流活动中,太阳每秒钟向宇宙空间释放着相当于一千亿个百万吨级核弹的能量。
用一块黑色玻璃对着太阳看,可以看到光辉璀璨的太阳表面有时会出现一些黑色的斑点,这就是太阳黑子。在风沙蔽日、阳关减弱的日子里,我们用肉眼就能看见太阳黑子。 在太阳的表面上,黑子有时确实只是个小小的黑点。可别小看这个小黑点,它的直径至少也有成百上千千米呢!那么,究竟什么是太阳黑子?简单来说,太阳黑子其实是太阳表面上刮起来的风暴,是一个个巨大的、成旋涡状的炽热气流。黑子并不黑。它的温度在4500°c左右,比沸腾的钢水还要热得多。但它比周围6000°c的高温低了大约1500°c。所以在明亮背景的衬托下,温度低的黑子就显得很黑了。 太阳黑子是怎样形成的呢?我们知道,太阳表面温度为6000°c,中心温度高达15000000°c以上。太阳表面密度很小,只有水的100亿份之一。而它的中心密度却很大,为水的110倍。这种内外巨大的温度和密度差异,引起了太阳物质的大规模运动。黑子就是太阳物质运动的一种表现。经过长期观测发现,太阳上的黑子数目,有些年份较多,有些年份较少。黑子数目的变化具有周期性,大约每隔11年出现一次高峰。太阳黑子出现的多少,反映了太阳物质活动的强弱。 太阳物质活动的变化,会对地球环境和地球上的生物产生不可避免的影响。太阳黑子的大爆发会干扰地球磁场,给航天、通信、导航定位、电网以及现代军事活动带来严重危害和巨大损失。,黑子大爆发还会使大气层上方出现的臭氧量激增。增加的臭氧要吸收比正常量更多的太阳热量,使气温、气压和大气环流发生变化,形成恶劣的天气。有科学家说,太阳黑子的“顽皮行为”很可能是导致“厄尔尼诺”等全球性气候反常现象的原因。
要看什么物体了,太阳的表面温度大约为6000摄氏度,距离太阳越远当然温度就越低,看看你说的物质的熔点是多少就知道了.
大约在五十亿年前,一个称为”原始太阳星云”的星际尘云,开始重力溃缩.体积越缩越小,核心的温度也越来越高,密度也越来越大.当体积缩小百万倍后,成为一颗原始恒星,核心区域温度也升高而趋近於摄氏一千万度左右.当这个原始恒星或胎星的核心区域温度高逹一千万度时,触发了氢融合反应时,也就是氢弹爆炸的反应.此时,一颗叫太阳的恒星便诞生了.
这个不一定,这要看物质的熔点,而基本上每一种物质的熔点都不同,所以不一定。 大约46亿年前,银河系的某个角落发生了超新星爆炸。这次爆炸的震波在星际星云中传送,导致不均匀更为严重。这么一来,星际云便朝著密度较浓的部分收缩,开始在中心形成原始太阳。原始太阳周围的气体往原始太阳掉落,距离较远的气体则开始绕著原始太阳旋转,形成圆盘状漩涡星云,称为原始太阳系星云。进入1980年代後期之後,红外缐天文卫星IRAS在一颗年轻星球「金牛座T型星」周围实际发现了这种圆盘状星云,并藉由红外缐观测到星球周围的灰尘。1992年,又在金牛座T型星观测到圆盘状星云的气体所放出的电波,同时确定了这些气体正在旋转。星际云中,1000分之一公釐的微尘约占总质量的1%。据推测,原始太阳系星云在初期是处於激烈的乱流状态,微尘和气体搅和在一起。後来乱流渐渐平息,微尘互相合并成长,沈积在圆盘中心面。这段期间长达数千年之久。微尘聚集成长为微行星沉积於圆盘赤道面的微尘层後来发生分裂,形成无数颗微行星。地球轨道附近的微行星大小约数公里,质量约一千兆公斤。这些微行星藉著彼此尺的重力不断碰撞、合并,而逐渐成长。微行星越大成长速...这个不一定,这要看物质的熔点,而基本上每一种物质的熔点都不同,所以不一定。 大约46亿年前,银河系的某个角落发生了超新星爆炸。这次爆炸的震波在星际星云中传送,导致不均匀更为严重。这么一来,星际云便朝著密度较浓的部分收缩,开始在中心形成原始太阳。原始太阳周围的气体往原始太阳掉落,距离较远的气体则开始绕著原始太阳旋转,形成圆盘状漩涡星云,称为原始太阳系星云。进入1980年代後期之後,红外缐天文卫星IRAS在一颗年轻星球「金牛座T型星」周围实际发现了这种圆盘状星云,并藉由红外缐观测到星球周围的灰尘。1992年,又在金牛座T型星观测到圆盘状星云的气体所放出的电波,同时确定了这些气体正在旋转。星际云中,1000分之一公釐的微尘约占总质量的1%。据推测,原始太阳系星云在初期是处於激烈的乱流状态,微尘和气体搅和在一起。後来乱流渐渐平息,微尘互相合并成长,沈积在圆盘中心面。这段期间长达数千年之久。微尘聚集成长为微行星沉积於圆盘赤道面的微尘层後来发生分裂,形成无数颗微行星。地球轨道附近的微行星大小约数公里,质量约一千兆公斤。这些微行星藉著彼此尺的重力不断碰撞、合并,而逐渐成长。微行星越大成长速度越快。现今木星领域的外侧,除了岩石物质以外,冰物质也在沈积,导致外侧原始行星的质量比内侧的原始行星大。质量一但超过现今地球的十倍,便会不断大量吸收周围原始太阳系星云的物质。等到总质量达到现今木星的程度,便会反过来排斥附近的星际云,再也不会把物质吸进来。於是大气的吸取到此为止,木星於焉诞生。木星的大气含有大量的氢和氦,正是原始太阳系星云气体的主要成分。

文章TAG:金牛座T型变星银河在哪里啊

最近更新

星座知识排行榜推荐